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The focusing properties of 4 laminar gas stream in a circular cylin-
drical tube with a linearly varying wall temperature are studied and
optical calculations are carried out in approximation of geometric
optics.

Particular attention has recently been devoted to
problems of developing long-range communications
systems involving the use of lasers [1-6]. However,
the distribution of the refractive index in the study of
gas lenses and lightguides is generally not coordin-
ated with that actually attainable. In this paper we
study a possible variant of a gas lens intended for the
transmission of a light beam with small losses and
simultaneous focusing, We will study those gas lenses
whose focusing action is based on the relationship
between the refractive index n of the gas and its tem-
perature. At constant pressure we have

n~1=n*=n;1T°-. (1)
Here ny = nJ' + 1 is the refractive index of the gas at
the temperature Ty. The propagation of the light
beam in a medium with a variable refractive index
will be examined within the framework of geometric
optics, The trajectory of the beam is defined [9] by

N grad n. (2)

The beam is hent in the direction of increasing re-
fraction, Thus the design of gas lenses is associated
with the development of appropriate temperature
fields within the closed channels,

Let us examine the flow of a gas in a straight cir-
cular tube of radius R and of length L, Here it is
assumed that: 1) the flow is laminar; 2) the velocity
profile is after Poiseuille; 3) energy dissipation is
neglected; 4) the thermodynamic characteristics of
the gas are independent of temperature.

Having introduced the dimensionless coordinates
x and y, the velocity v and the temperature 6, we
write the energy equation [7]
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where
B = a/vRe. (4)

It is easy to prove that the following will be one of
the solutions [8]:

6=bx——c(l—~y’)+j§-(1—y“), (5)
where b and ¢ are constants expressed in terms of B:

b=4pc. ] (6)

The coefficient ¢ is defined by the radial temperature
difference AT in any cross section of the tube

4 AT
= . 7
¢ T T (7)
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As is seen from (6) and (7), for a linearly varying
wall temperature the radial temperature profile is

Fig. 1, Radial temperature distribution in tube.

defined by the longitudinal temperature gradient of
the wall, The gas temperature increases monotonic-
ally from the axis to the wall, Figure 1 shows the
form of the temperature profile at any of the lateral
cross sections of the tube (all profiles are similar),
Let us return to the optical portion of the problem,
We will reverse the direction of the x-axis, since
the beam must be directed in a direction opposite to
that of the longitudinal temperature gradient. For-
mula (5) is rewritten to the form

=—w—m—ﬁ+§u—w. (8)

In view of axial symmetry we can limit ourselves to
examination of the plane problem. Equation (2), with
consideration of (1) and (8), assumes the form

" n;c
Y+ ayeatern
x(P+y? By + 2y —y*) = 0. (9)

The solution of (9) for the boundary conditions
ylx=0) =y, yx=0 =y, (10)
yields the trajectory y = y(x).

Let us evaluate the order of magnitude for the co-
efficients in (9). For gases n* ~ 10-3-10~%, When
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Ty ~ 300-320° K and AT ~ 5-25° K the coefficient
¢ falls within the range 0.02~0.1, 8 ~ 1/Re, since
a and v are of the same order, -1 < 0 < 0,
Below we will limit ourselves throughout to parax-
ial beams for which

[gol < 1, 1ypl < L (11)
With y'® and n} negligibly small in comparison with
unity, instead of (10) we derive the equation

(1+0Ry +c*4By" + 2y —4®) =0, (12)

where c* = nfe.

Let us examine some approximations simplifying
the solution of (12) and making it possible to obtain an
analytic solution,

I. Let us assume |#] < 1 and neglect the term c*y’
in (12). This indicates that we are speaking of small
relative temperature variations. Then

y' + 4Bty + 2%y = 0. (13)

For the condition

A% = 2c* (1 — 2B%*) > 0 (14)

which, obviously, will be satisfied, the trajectory
described by (12) has the form

y = Aexp(— 2B c*x)sinA(x - B). (15)
Her_’e
(2B c*yy + o)
A=y, 1/_1_{’%_-}?;%*0’ (16)
Ay,

B = arctg 3B (17)

Yo+ 1y,

The beam’ trajectory as is seen from (15) (in the
adopted approximation) oscillates about the lens axis.
The oscillations are damped, but insignificantly,
since the exponent is small, From (15) we can find
the relationship between y, and y} at which the beam
fails to reach the lens wall, Analysis shows that con-
siderably more rigorous limitations are imposed on
the divergence of the entry beam than on its initial
deviation from the lens axis,

The oscillation period is given by

2n

: X:T, (18)
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and it diminishes as the radial temperaturc gradient
increases.

I, If in (12) we again assume 0| <~ 1 and neglect
the term proportional to y', since it results in no sig-
nificant changes in trajectory, we obtain the equation

Y +c* 25— 1) =0. (19
The solution of this equation is expressed in terms of
the elliptical Jacobi functions [10], The heam tra-
jectory is a periodic curve. The oscillation period iy
=4 V2T A K k), (20)
where

a2
K= { (1—ksintq) " de, (21)

0

and the modulus of the elliptical function

2—A

B = ) (22)
2+ A
SRR Y S - R (23)
- yO yO c* yO *
The permissible values of k? lie in the interval
0 < R2 1/3, (24)

which imposes limitations on y; and yi.

I1I. If in (12) we neglect the terms proportional to
y' and y°, but allow for the change in temperature
along the axis, assuming 6 ® —bx, we derive the
equation

(1 —bx)*y" + 2c*y = 0. (25)
If the condifion
2 . n; — _{_ ~ 0 <
g = 8{326 4 - (26)

is satisfied, Eq. (25) has a solution of the following
form [11]:

y =AYV 1 —4Bcx sinlnfg(l — 4P cx) - B), (27)

with A and B integration constants,
Condition (26) is satisfied, for example, for air
when Re¥/c > 104, i, e., even when Re > 102,
Analysis of (27) and comparison of the latter with
(15) demonstrates that the oscillation periods in both
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Fig. 2. Determination of gas lens focal length.
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cases are close to each other, but consideration of
the longitudinal temperature gradient yields consid-
erably more pronounced attenuation of the beam~tra-
jectory oscillation amplitude than the solution of (15),

Knowing the trajectory of the beams in the gas
lens, we can calculate its focal length f. Let ny be
the refractive index of the medium surrounding the
lens, The beam enters the lens parallel to its axis at
a distance y; (see Fig. 2). Passing through the lens
and refracted at the boundary between the lens and
the external medium, the beam is propagated rec-
tilinearly. The difference between the abscissas of
the points of beam intersection with the x-axis, and
the intersection of the extension of the latter with the
initial direction, is taken as the focal length of the
lens,

From Fig., 2 we find

=] Y|

! nil, y(Dlsing = n;sing;.
teor P 15 @y

Assuming the angles ¢ and ¢; to be small, we have
tgg =y () =sing.
Then

f= m ] Yo l_
’ all, gy { y' (D)

It is obvious that the lens will focus those beams
for which y'(1) = 0 when y(I) = 0. Since the refractive
index of the gas varies only slightly, even with con-
siderable changes in temperature, with extremely
great accuracy we find that

M,
nil, yi

so that

f=] ;‘EZ) '
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Since the beam trajectory is a function of y;, the
lens will exhibit spherical aberration.

NOTATION

Here x is the dimensionless coordinate along the
lens axis; y is the dimensionless coordinate along the
radius; Ty is the tube wall temperature at x = 0; 9 is
the relative temperature change; u is the gas velocity;
ug is the gas velocity at the tube axis; [ is the dimen-
sionless lens length; fis the focal length based on tube
radius; a is the thermal diffusivity; v is the kinematic
viscosity; cp is the heat capacity at constant pressure;
o is the radius of light beam curvature.
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